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Abstract. The pressure and entropy of the face-centred cubic and hexagonal close-packed hard-
sphere crystals were measured. At the melting density, the hcp crystal has a higher pressure.
A precise equation of state is reported for the crystals. The equation extrapolates to a spinodal
instability in the metastable low-density crystal.

1. Introduction

Nearly half of the elements are known to form face-centred cubic (fcc) or hexagonal close-
packed (hcp) crystals, and the two crystal types occur in nature with about equal frequency.
For rigid spheres, these structures provide the most efficient packings, in which the spheres
occupy

√
2π/6 or 74% of the space.

This study of the crystals was motivated by Woodcock’s report [1] of a Gibbs free-
energy difference,1G = 0.005(1)NkT , favouring the fcc crystal. Throughout this
paper1X meansXhcp − Xfcc, N is the number of spheres,k is Boltzmann’s constant,
T is the temperature and a number in brackets gives the uncertainty in the last digit
quoted. Woodcock’s result is five times larger than expected from the entropy difference,
1S ≈ −0.001(1)Nk, reported by Frenkel and Ladd [2], which has been verified by
more precise measurements [3, 4] since Woodcock’s report [1]. Much, but not all, of
the discrepancy is explained by the finding that there is a significant pressure difference
between the two crystals near the melting density.

2. Methods and results

The simulations used standard molecular dynamics methods [6, 7] with periodic boundaries.
They were performed with a constant number of spheres, at constant volumeV and energy
U . The fcc crystals were simulated in a cubic box. The hcp crystals were simulated
in rectangular boxes with side lengths in the ratios 11

√
3:15:22

√
(2/3) (N = 7260),

9
√

3:13:18
√
(2/3) (N = 4212), 7

√
3:10:14

√
(2/3) (N = 1960) and 4

√
3:8:8
√
(2/3) (N =

512). The density,z = (N/V )σ 3/
√

2, is expressed relative to close packing.
Figure 1 shows that pressures measured above the melting density,zm = 0.736 [8], are

precisely represented by the simple empirical equation of state

PV/NkT = 3/(1− z)− a(z− b)/(z− c) (1)
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Table 1. The parameters in equations (1) and (2) and a comparison of the values of1igS(zm)/Nk

calculated from equation (2) with independent values obtained for crystals ofN = 12 096 spheres
[12] at zm = 0.736. S0(hcp) was adjusted to be consistent with the precise measurement of1S

[4] at z = 0.7778. To agree with [12], both values ofS0 should be 0.0014 more negative.

Crystal a b c S0 1igS/Nk 1igS/Nk [12]

hcp 0.5935 0.7080 0.601−2.5335 −5.9186(14) −5.920 03(13)
fcc 0.5921 0.7072 0.601−2.531 −5.9178(14) −5.919 16(13)

Figure 1. The pressurePV/NkT of the fcc and hcp hard-sphere crystals, relative to values
calculated from equation (1) with the constants from table 1, versus the density relative to
close packing,z. To separate the points, the fcc results are shifted up by 0.0025. Results
are forN = 2048 (fcc) orN = 1960 (hcp). The pressure was measured in runs of 20 million
collisions except at the densitiesz = 0.68, 0.7 and 0.736 (the melting density [8]), where runs of
300 million collisions were used to improve the precision. In the density range where the crystal
is stable, the maximum deviation of any point from equation (1) is 0.0007. Atz = 0.68 the
measuredPV/NkT is 0.08(3) higher than values extrapolated with equation (1). For crystals of
500 spheres, the pressures are 0.003 lower near the melting density and the difference is smaller
at higher density.

with the constantsa, b and c listed in table 1. The measured pressures are higher than
values extrapolated with equation (1) whenz < zm. Equation (1) agrees with the empirical
equation of Hoste and Van Dael [9] to within 0.02 inPV/NkT and it agrees with the most
precise data reported by Alderet al [10], for N = 500 spheres, to within less than half their
estimated uncertainties.

Figure 2 shows that the pressure of the hcp crystal is systematically higher than that
of the fcc crystal, at the same volume, implying that the fcc crystal is denser at the same
pressure. The difference is smaller than the uncertainty away from the melting density but,
when the uncertainty is reduced by running the simulations for long times, the difference
1PV/NkT = 0.0026(7), is measurable at the melting density. Woodcock [5] has confirmed
this difference, in the cell model [1, 8], and reports1PV/NkT = 0.0029(5) (N = 12 000)
at the melting density.

The entropy was measured with the tether method [11] at densityz = 0.9, for crystals
of up to 7260 spheres. The method is as described previously [11] except that the pressure
on the tether cell wall was measured in runs of 10 to 30 million collisions at each tether
length, the centre of mass of the spheres was allowed to drift freely and no corrections
[11] were applied. More precise results [3, 4] have been reported since these measurements
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Figure 2. The difference in pressure,1PV/NkT , between the hcp and fcc crystals versus the
densityz. The line is from equation (1) with constants from table 1.

Figure 3. The entropy of the fcc and hcp crystals, relative to the entropy of an ideal gas at the
sameN , V andT , plotted against 1000/N whereN is the number of spheres in the simulation.
Note that the sign of the entropy difference changes withN .

were made, so they are reported briefly, for the purpose of comparing methods. Figure 3
shows the system size dependence of1c

igS, the entropy of the crystal relative to an ideal gas
at the same volume and temperature (using Stirling’s approximation, to second order, for
ln{N !}). 1c

igS is independent ofN for N > 2000, to within the uncertainty. The entropy at
any other density is obtained by integrating the thermodynamic relation(∂S/∂V )U = P/T ,
using equation (1) for the pressure, which gives

1c
igS(z)/Nk = −3 ln{z/(1− z)} + (1+ ab/c) ln{z} + a(1− b/c) ln{z− c} + S0. (2)

The constant of integrationS0, where values are listed in table 1, is determined by the
entropy in the thermodynamic limit from figure 3. The entropy at the melting density, from
equation (2), is compared with independent measurements [3, 12] in table 1. The methods
agree to within the estimated uncertainty. All of the entropy measurements [1–5, 12] refer
to crystals without vacancies. The equilibrium vacancy concentration in the crystals is about
1 vacancy per 10 000 spheres near the melting density [13]. Adding a vacancy to a crystal
of 10 000 spheres involves the work 10−4PV ≈ 0.001NkT , corresponding to an entropy
change of 0.001Nk, which is similar to the uncertainty in the entropies shown in table 1.

From equation (2),1S varies by 0.0003(2)Nk over the density rangezm 6 z 6
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1 and 1S = −0.0008(23)Nk at the melting density. Bolhuiset al [3] report
1S = −0.000 87(20)Nk (N = 12 096 at zm) and Bruce et al [4] report 1S =
−0.000 86(3)Nk (N = 5832 at z = 0.7778). These very precise measurements make
obsolete the less precise value of1S calculated here, though the agreement between the
three very different methods is reassuring.

Woodcock [1] calculated

1G(P ) =
∫ P

0
1V (P ′) dP ′ = 0.005(1)NkT (3)

but he assumed that evaluating the integral up to the same density for each crystal was the
same as evaluating it up to the same pressureP . In other words, he evaluated1G(V )
and assumed thatG(P ) = 1G(V ). To within a negligible correction term,1G(P ) =
−T 1S(V ) = 1G(V ) − 1P V and the measured value of1P V = 0.0026(7)NkT
accounts for about 60% of the difference between Woodcock’s result [1] and the others
[2–4]. With a recalculation that avoids the above assumption, Woodcock [5] found
1S = −0.0026(10)Nk (N = 12 000 atzm), so a smaller discrepancy remains.

3. Discussion

The small differences between the pressure and entropy of the fcc and hcp crystals are
summarized by equations (1) and (2) with the constants in table 1. The relative stability
of the two crystals is now decided [2–5] in favour of the fcc crystal and the results of this
work are obsolete in that respect.

Figure 4. The pressurePV/NkT of the fcc crystal plotted against 1000(z − zs)2. Points
are shown for the density range 0.68 6 z 6 0.8. The straight line showszPV/NkT =
6.31+ 222(z− 0.643)2.

Equation (1) extrapolates to a spinodal instability [14–18], where(∂P/∂V )T → 0 and
the expansivity, compressibility and heat capacity of the metastable crystal diverge. The
spinodal is located, by extrapolation of equation (1) or from figure 4, atzs ≈ 0.643 where
PV/NkT ≈ 9.3. The crystals melt spontaneously whenz ≈ 0.67, so the spinodal is never
reached. However, when the crystals are prevented from melting, by applying cell model
constraints [1, 5, 8], or by tethering [11] the spheres to their lattice sites, the instability is
evident. Woodcock’s calculations [1] show it nearz = 0.64 wherePV/NkT = 9.4, for
the fcc cell model. His method [1, 5, 8] of calculating the entropy relies on integrating the
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pressure of the cell model crystals through the instability. For the unconstrained crystals
studied here, the increase in fluctuations near the spinodal shows up in the poor precision
of the measured pressures atz = 0.68 (figure 2).

Sciortino et al [17] have recently shown that when models for ice and silicates are
stretched in simulation experiments, they also behave as though tending towards a spinodal,
located just beyond the point where the crystals rupture. In particular, the pressure varies
as

P = Ps + B(z− zs)2 (4)

wherePs andzs are the pressure and density at the spinodal andB is a constant. Equation (4)
is the limiting form expected [14–16] near a mean-field spinodal. Figure 4 shows that the
hard-sphere crystal follows the same form as ice [17], the silicates [17], liquid water [14–16]
and other models [18] near their respective limits of stability, so this behaviour seems rather
general.
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